The University of Sheffield
Impact Ionisation Group

Aluminium Gallium Arsenide Ionisation Coefficients


The figure shows the impact ionization coefficients for the III-V ternary semiconductor material, Aluminium Gallium Arsenide (Al0.6Ga0.4As and Al0.8Ga0.2As), as a function of inverse electric field at room temperature. These ionization coefficients were obtained from photomultiplication measurements undertaken on a range of PIN and NIP diodes of different avalanching widths.

Al<sub>0.6</sub>Ga<sub>0.4</sub>As ionisation coefficients Al<sub>0.8</sub>Ga<sub>0.2</sub>As ionisation coefficients

The electron (hole) ionization coefficients, α (β) plotted in the diagrams above can be expressed as


$$\alpha(\beta)=A\exp{\left({-\frac{B}{F}}\right)^c}$$

where F is electric field strength. The constants A, B and c are tabulated as below.

MaterialF (kV/cm)Coefficient TypeA (x105 cm-1)B(x105 cm-1)c
Al0.6Ga0.4As330-1100α2.9511.601.44
β3.1112.101.43
Al0.8Ga0.2As328-1110α3.1810.401.67
β3.5511.201.85
1110-1540α38.40102.000.55
β38.40102.000.55

α(β) can be can be used in simple analytical expressions to determine the avalanche multiplication (or gain) and the breakdown voltage. In thin avalanching structures, α(β) overestimate the multiplication as they ignore "dead-space" effects. They also cannot accurately predict the excess noise due to the impact ionization process. Models to predict the multiplication and excess noise in thin avalanching structure require knowledge of enabled ionization coefficients, α*(β*).

α*(β*) can be approximated from α(β) using1

$$\frac{1}{\alpha^*}=\frac{1}{\alpha}-\frac{2E_{the}}{F}$$ $$\frac{1}{\beta^*}=\frac{1}{\beta}-\frac{2E_{thh}}{F}$$
where Ethe (Ethh) corresponds to the Al0.6Ga0.4As and Al0.8Ga0.2As electron (hole) threshold energy and is given as 3.4 (3.6) eV2 and 3.2 (2.3)1. A full description on model which uses α*(β*) (recursive model) is given by Saleh et. al. 3 and the numerical equivalent model (RPL model) is by Ong et. al.4

The Al0.6Ga0.4As data is taken from Plimmer et. al.5 while the Al0.8Ga0.2As data is from Ng et. al6. Details of ionisation coefficients over a wide electric field range can be found in Cheong et. al.1 for AlGaAs and other popular semiconductor materials.


References

  1. J. S. Cheong, M. M. Hayat, X. Zhou and J. P. R. David, Relating the Experimental Ionization Coefficients in Semiconductors to the Nonlocal Ionization Coefficients, IEEE Transactions on Electron Devices, 62, no. 6 (2015): 1946-1952. DOI: 10.1109/TED.2015.2422789
  2. C. H. Tan, J. P. R. David, S. A. Plimmer, G. J. Rees, R. C. Tozer, and R. Grey, Low multiplication noise thin Al0.6Ga0.4As avalanche photodiodes, IEEE Transactions on Electron Devices, vol. 48, pp. 1310-1317, 2001. DOI: 10.1109/16.930644
  3. M. A. Saleh, M. M. Hayat, P. P. Sotirelis, A. L. Holmes, J. C. Campbell, B. E. A. Saleh, et al., Impact-ionization and noise characteristics of thin III-V avalanche photodiodes, IEEE Transactions onElectron Devices, vol. 48, pp. 2722-2731, 2001. DOI: 10.1109/16.974696
  4. D. S. Ong, K. F. Li, G. J. Rees, J. P. R. David, and P. N. Robson, A simple model to determine multiplication and noise in avalanche photodiodes, Journal of Applied Physics, vol. 83, pp. 3426-3428, 1998. DOI: 10.1063/1.367111
  5. S. A. Plimmer, J. P. R. David, G. J. Rees, and P. N. Robson, Ionization coefficients in AlxGa1- xAs (x = 0 - 0.60), Semiconductor Science and Technology, 15, no. 6 (2000): 692-699. DOI: 10.1088/0268-1242/15/7/307
  6. B. K. Ng, J. P. R. David, S. A. Plimmer, G. J. Rees, R. C. Tozer, M. Hopkinson, et al., Avalanche multiplication characteristics of Al0.8Ga0.2As diodes, IEEE Transactions on Electron Devices, 48, no. 10 (2001) : 2198-2204 DOI: 10.1109/16.954454